Network Environments in AnyLogic

Nathaniel Osgood MIT 15.879

March 16, 2012

Hands on Model Use Ahead

Load your recently created SI model (provided alternative: MinimalistSIRNetworkABM)

The *Environment* defines both Spatial & Network (Topological) Context

Network Specification in AnyLogic

- When considering networks in AnyLogic, we specify two somewhat distinct (but coupled) things
 - Network topologies
 - Spatial (and visual) Layouts

Networks & Spatial Layouts

- Distinct node attributes: Location & connections
 - Spatial layouts determine where nodes appear in space (and on the screen!)
 - Network type determines who is connected to who
 - For the most part, these characteristics are determined independently
- Network topologies (connectedness) can be defined either alternative to or in addition to spatial layouts
 - Agents will have spatial locations in either case

Network Types

Layout Types

Layout Type

- Random: Uniformly distribute X and Y position of nodes
- Arranged: Set node locations in a regular fashion (normally in a 2D grid)
- Ring: Set node locations in periodically spaced intervals around a ring shape
- Spring Mass: Adjust node locations such that node locations that are most tightly connected tend to be closer together
 - (Sets location based on network!)
- User-Defined User can set location (e.g. in initialization code)

Distance Based Networks

- Function: Capturing geographic locality in networks
- Networks may be discontinuous (divided into disjoint components) when
 - The threshold is small
 - The density of the spaces (nodes per unit area) is too small

Interaction Between Network&Location 1

- For one type of networks (Distanced Based), whether there is a connection between A and B depends on the distance between A & B
 - This sets connectivity based on location considerations!

Property for Distance-Based Layout: Distance Threshold

Distance-Based Layout

Property for Distance-Based Layout: Distance Threshold

Purely Local Connections: Ring Lattice

- Purely local connectivity
 - Agents arranged in a ring
 - Connections by a given agent to some number of agents on either side of itself in the ring
- Slow propagation of infection (no "short cuts" from one region to other regions)
- NB: Most naturally displayed with "Ring" "Layout type"

Ring Lattice – No Ring Layout

Ring Lattice – Choosing Ring Layout

Ring Lattice Topology – With Ring Layout

Global Connectivity: Poisson Random Networks

- In Poisson random networks (also called "random networks" or "Bernoulli networks"), any pair of nodes (A,B) exhibits the same chance of connection as any other pair of nodes
- This network type has no preference for any sort of "locality" (topological or spatial)
 - There is no more overlap in the connections of two neighbors than among two arbitrary nodes in the population

Global Random Mixing: Random Connections

Connections over static Random networks can yield results very similar to what res from continuous, dynamic random mixing in an aggregate model

With Random Connections

Scale-Free Network

		0 4 1
Console 🔲	Properties 🖂	▽ □ □
nvironment	t – Environment	
General Advanced Description	Space type:	
	Layout type: User-defined ▼ Apply on startup Network Scale free ▼ Apply on startup Connections per agent: 5 Connection range: 100 Neighbor link fraction: 0.95 M: 5	

Intuitive Plausibility of Importance of Heterogeneity

- Someone with high # of partners is both
 - More likely to be infected by a partners
 - More likely to pass on the infection to another person
- Via targeted interventions on high contact people, may be able to achieve great "bang for the buck"
- We may see very different infection rates in high contact-rate individuals

 How to modify classic equations to account for heterogeneity? How affects infection spread?

Scale-Free Networks

- A node's number of connections (a person's # of contacts) is denoted k
- The chance of having k partners is proportional to $k^{-\gamma}$.
- For human sexual networks, γ is between 2 and 3.5
 - E.g. if γ =2, likelihood having 2 partner is proportional to ¼, of having 3 is proportional to 1/9, etc.

Power Law Scaling

- This frequency distribution is a "power law" that exhibits invariance to scale
- Suppose we change our scale ("zoom out") in terms of number of connections (k) by a factor of α

```
Cf: p(k)=ck^{-\gamma}

p(\alpha k)=c(\alpha k)^{-\gamma}=c\alpha^{-\gamma}k^{-\gamma}=\alpha^{-\gamma}ck^{-\gamma}=dp(k)
```

- In other words, the function p(k) "looks the same" at any scale it "zooming out" on the scale of # of connections by factor α just leads it to be multiplied by a different constant
- We can get power law scaling from many sources; a key source is dimensional structure
- Power law probability distributions have "long tails" compared to e.g. an exponential or normal

The Signature of a Power Law

- Plotting a power law function on a log-log plot will yield a straight line
 - This reflects fact that $p(k)=ck^{-\gamma}=>\log[p(k)]=c-\gamma\log[k]$
 - So if our axes are v=log[p(k)] and h=log[k], $v=c-\gamma h$
- This relates to the fact that the impact of scaling (scaling) is always the identical (divides the function by the same quantity)
 - e.g. if γ =2, doubling k always divides p(k) by 4 (no matter what k is!)
 - In other words, no matter how many connections we may have, the fraction of people with this many connections is 4x the fraction with 2x this many connections!
 - e.g. if y=3, doubling k always divides p(k) by 8

Slides Adapted from External Source Redacted from Public PDF for Copyright Reasons

Scale-Free Network

Small World

- Small world networks represent a sort of "weighted combination" of
 - Ring lattice network (purely local connections)
 - Random network (mostly global connections)
 - The "Neighbor link fraction" in AnyLogic dictates what fractions of the connections are to the local neighbors (per ring lattice)
- Beware of the inconsistency in the definition of "Connections per agent" for small world networks
 - Off by a factor of two!

Interaction Between Network & Location 2

- In a Spring-mass layout, the nodes that are highly connected will tend to be clustered
- Here, we are determining the location based on the connectivity!

Example Network Substructure

General ABM Network Caveats

- In thinking about the effects of & tradeoffs between interventions, need to recognize that networks are emergent phenomena, driven by
 - Mobility patterns
 - Relationship formulation & dissolution
- Many networks are dynamic, but traditional measures rarely yield dynamic high temporal resolution data
- We typically have only partial information on network structure
- Often collected via a non-random sampling process
- Networks specific to definition of "contact"

Example: Contact Tracing Networks

- These are produced by an asymmetric or biased contact tracing protocol
 - Uses definition of contact (e.g. needle-sharing incident, spending >8 hours in past 30 days, past or ongoing sexual relationship)
 - Perform tracing only under certain conditions
- Data at hand is likely collected over a substantial amount of time
 - The network may have changed during this time
- Unclear what this says about the network of the general population

AnyLogic Network Caveats

- Built-in networks are handy for routine tasks, but do not offer much flexibility e.g. preferential attachment, post-construction additions, etc.
- Constructing built-in networks can computationally expensive
- The "M" parameter in a Scale-Free network would not appear to be either classic parameters γ nor m (from Barabasi paper)
 - Mean # of connections/person is approximately twice this value
 - Number of connections per individual are often in discrete categories?
- NB: The "Small world" network uses a definition of connections/person inconsistent with those for other networks
 - Off by a factor of 2!

Network Dynamics in AnyLogic

- Observed networks are often dynamic over a
 - wide range of timescales
- These dynamics can be very important to overall system dynamics.
- We can represent switching connections using
 - Removing a connection
 - Adding a new connection

Hashemian, M., Stanley, K., and Osgood, N. 2010. Flunet: Automated tracking of contacts during flu season. Proceedings of the 6th International workshop on Wireless Network Measurements (WiNMee 2010), 557-562, 6pp.

Automatically Wired Connections

- Predefined built-in (i.e. non-user-defined)
 AnyLogic network types can take care of "wiring in" a new node into an existing network
 - Just call environment.applyNetwork() to get the environment to "recalculate" the network – and thereby include the new node.

AnyLogic methods for Adding & Deleting Connections

- agentA.connectTo(agentB)
 - Connects agentA to agentB
 - NB: Connections are assumed to be undirected and symmetric (i.e. if agentA is considered to be connected to agentB, then agentB is considered to be connected to agentA)
- agentA.disconnectFrom(agentB)
 - Disconnects agentA and agentB from each other
- For more details and additional methods, see the slides for the *Networks* lecture

Useful Methods for Dealing with Networks

- agentA.getConnectionsNumber()
 - Gets count of connections associated with agentA
- agentA.isConnectedTo(agentB)
 - Return true if agentA and agentB are connected; false otherwise
- agent.getConnectedAgent(int index)
 - Returns the *index*th agent connected to agentA. Note:
 The first person is at index 0 (not index 1!)
- agent.getConnections()
 - Returns list (LinkedList<Agent>) of all connections of Agent agent. Can loop over this with e.g. a for loop